 MasterLab, Inc.

Performance Engineering Maturity
Mo Howes

September 2008 – Version 4
We define performance engineering to be the set of practices required to manage the performance and availability qualities of computer systems such that:

· Risk to the enterprise is managed and controlled in a structured manner
· Cost of successful delivery is optimized
· New business opportunities may be recognized through advancements in technology.
We prefer the term “Performance Engineering” over the frequently used term “Software Performance Engineering”, as this subject matter must address both hardware and software in an integrated fashion.
In this paper we will focus exclusively on the maturity of performance and performance monitoring practices. Maturity models for high availability and fault tolerance will be presented in a separate white paper.

Pragmatically, the advancement of performance engineering practices within any enterprise is foremost an exercise in education and clarification of responsibilities and accountabilities. This then sets the stage for an intelligent introduction of methods and tools into the environment.
The first step is to understand how to assess performance engineering maturity. This allows you to (a) understand where you are currently at as an organization, and (b) make an informed decision about where you would like to be.

The reminder of this paper discusses how to measure the maturity of your performance engineering practices. We prefer this model over other models found within the industry, because we feel (a) it is simpler, and (b) it more clearly draws focus and attention to the core issues that must be addressed.
The MasterLab Performance Engineering Maturity Model TM has two components:

· Application Delivery. This focuses upon the maturity of practices associated with specifying performance requirements and ensuring that applications - upon delivery - will meet these requirements. It also focuses on the maturity of processes for optimizing delivery costs against the firm’s exposure to performance and time-to-market risks.
· Monitoring and Capacity Management. This component focuses upon the maturity of practices for (a) monitoring, alerting, and forecasting hardware utilization and capacity, and (b) monitoring and alerting application performance relative to a performance requirement, and (c) monitoring “white box” application behavior in support of real time application profiling to rapidly determine the root cause of performance failures.
Both components have five levels of maturity, rated 0 through 4.

Application Delivery

Delivery Level 0. Firms operating at Level 0 typically have no systematic process in place for estimating the risk an application exposes the firm to, and application performance requirements either do not exist or are not well formed.
No formal performance testing is executed between functional integration and deployment. Performance defects are detected after going live, resulting in business loss and excessive overruns in maintenance budgets or at worst, failed deliveries. Performance engineering resources are primarily dedicated to root cause analysis and re-engineering efforts.

Ownership of performance risk management is poorly defined or ambiguous. Application owners and architects often view performance as a primarily a hardware provisioning exercise that this is owned by the operations staff or by hardware capacity services. They do not recognize that 80% of the performance risk the firm is exposed to is actually due to software that does not scale to consume the hardware available to it.
Vendor RFI’s, and RFP’s contain no performance requirement sections, or these sections are incomplete. The firm poorly understands how to interact with vendors to use the leverage inherent in pres-sales relationships to reduce the costs of managing performance risk.
Delivery Level 1. This is identical to Level 0, however some ad hoc performance testing is conducted between integration testing and going live. The defining characteristics of this level are (a) performance requirements are not well formed
 and (b) the testing process is not well defined and is applied inconsistently.
In our view, Level 0 and Level 1 are nearly identical when viewed from the perspective of managing firm wide exposure to performance risk.
Delivery Level 2. Well formed performance requirements are introduced, however are specified only after integration and before going live - at which point formalized performance tests are executed. On one hand, this is a significant step forward in that it greatly reduces the firm’s exposure to business loss due to applications failing to meet performance needs under peak load. On the other hand, it does very little to mitigate the business damage caused by unplanned reengineering efforts and late or failed deliveries.
Firms transitioning from Level 1 to Level 2 observe:
· A significant decrease in the number of live applications unexpectedly failing under peak load - at the times when business loss is the greatest.

· An increase in delivery cost from having to introduce formalized performance testing

· A “phantom” increase in delivery costs and delivery-date-overruns due to an increase in the number of applications that must be re-engineered prior to going live to remediate performance defects. We refer to this as a “phantom” cost because these reengineering overheads are simply being moved from the maintenance cycle to the delivery cycle.
· There is a growth in awareness that the responsibility for delivering performant applications must be owned by application managers, architects, and developers, and that managing hardware capacity is a quite small part of the problem.
Level 2 requires a blending of two distinct skill sets:
· Business analysis skills required to properly ground the performance requirement in the business context.

· Performance measurement and simulations skills to ensure that (a) the performance requirement is well formed and (b) the test design and execution has integrity.

Delivery Level 3. This level constitutes a shift from reactive to proactive performance engineering practices. Performance and functionality are placed on the same footing during the entire delivery process. A systematic process is established to assess the firm’s exposure to performance risk for each application, and appropriate resourcing is allocated to performance engineering throughout the delivery cycle. Well formed (although higher in level) performance requirements are established during envisioning. Product selection, architecture, and design activities all view performance requirements to be on equal footing to functional requirements.
During the delivery process, the performance requirement is continually refined and decomposed into smaller units. Developers and vendors are held responsible for producing sub-components that meet the “performance budgets” associated with their delivery. Well formed performance requirements are included in vendor RFI’s and RFP’s. Pre-sales relationships with vendors are leveraged to force vendors to either conclusively demonstrate that their products can meet the firm’s performance requirements or have them participate in the cost to demonstrate this in a lab environment.
Firms transitioning from Level 2 to Level 3 observe:

· A significant decrease in product deliveries that either fail or that must incur time and cost overruns to rectify performance defects.

· A decrease in costs associated with the performance testing that occurs after integration and before deployment. This is due to (a) a lessened need to do business analysis to formulate the performance requirement, as this has been maintained throughput the deliver process, and (b) a lessened need to do repeated performance regressions in support of “last minute desperation tuning”.
· A more balanced understanding and distribution of responsibilities associated with managing performance risk.

· The need to introduce the role of performance architect:
· To facilitate the creation of performance requirements during envisioning

· To refine and decompose these requirement into “performance budgets” for sub-components throughout the delivery process

· To inject product functionality into analysis and design activities that enable both white box and black box instrumentation of performance metrics
.
· The need to ensure that developers have the skills and tools necessary to validate the performance of sub-components against “performance budgets”.

Level 3 is highly proactive, in that it recognizes that the total cost of delivery and the management of the firm’s exposure to performance and late delivery risk is optimized only by ensuring that the topics of performance and functionality are placed on equal footing with respect to envisioning, analysis, design, coding, and testing.

Delivery Level 4
. In some businesses a quantum leap forward in performance capabilities can translate to enormous competitive advantages. For instance, within the financial, military, and biotech environments – each highly competitive in its own way – winners and losers are often determined by creative and innovative performance engineering practices.
Level 4 practice occurs when business owners (as opposed to technology product owners) allow what we call “Domain Performance Architects” or DPA’s to have a seat on the teams that do strategic product and service innovation for the firm. Typically these teams already comprise of people that have a complete understanding of the business context and processes and an 80% understanding of current and future state hardware and software technology. The DPA, on the other hand, has a complete hands-on understanding of the technology, and an 80% understanding of the business context and processes.

While this distinction may not seem significant, our experience is that the benefits can be enormous. The DPA has hands-on skill sets whereby they can rapidly deliver proof-of-concepts, conduct experiments, and deliver fast-track research in ways that cannot be matched by the business domain experts either attempting to do this work themselves or by interfacing with more traditional technologists to perform this work.

Obviously a DPA is a rare bird.

· They must have an extraordinary depth and breadth of hands-on experience with the technologies relevant to their domain.

· This understanding must be heavily weighted toward performance behavior – and not just functional behavior or component integration.

· The DPA must have a level of understanding of the business context, processes, and flows to stand on their own right with domain innovators. This is where true value is created. It allows “high bandwidth” communication to occur that facilitates brainstorming and enables rapid servicing of prototyping and research requests.
Level 4 practice is characterized by innovative performance ideas actually driving strategic business thinking.

Monitoring and Capacity Management

Monitoring Level 0. Environments that have no formal enterprise approach to fundamental resource
 monitoring or alerting are operating at Level 0. An example of Level 0 behavior is when an end user complains of performance problems and a systems administrator must log into the application host to explicitly start monitors in the hope of viewing the fundamentals should the problem occur again.
Monitoring Level 1. This level is attained when enterprise monitoring solutions are uniformly deployed that:

· Monitor fundamentals and archive this data in a way that makes it easy to analyze any performance event after it occurs.

· Support monitoring, archival and post review of any performance metric published by the operating system, supporting detailed root cause analysis beyond just the fundamentals.

· Support threshold alerting (i.e. email me if CPU utilization exceeds 90% for more than 5 minutes).

· Support trend analysis. (i.e. CPU utilization is growing by 10% a month so I will need to provision another CPU to this application next quarter).

· Support utilization translations. This includes forecasting utilizations (a) when migrating an application from one platform or hardware architecture to another, and (b) when forecasting utilizations when consolidating multiple applications onto a single platform.
Monitoring Level 2. Levels 0 and 1 represent monitoring and capacity management of hardware. Level 2 is the transition to monitoring and capacity management of applications. To achieve this level, the application must work in cooperation with the monitoring infrastructure to:
· Capture, report, and alert on business usage of the application. For example a trading system may monitor order and fill rates, sampled once per minute. The structure of this monitoring must map directly to the structure of the performance requirement.

· Capture, report, and alert on response times as defined in the performance requirement. For example a trading system may monitor end user response times on order entry events.

Monitoring Level 3. This level is achieved when end-to-end latency for asynchronous events are captured, reported, and alerted. For example, a trading systems may need to measure the time from when a client submits an order until it is submitted to an exchange. While both Level 2 and Level 3 directly map to the structure of the performance requirement, we split them in to two levels because monitoring point-to-point latencies is often much more challenging:

· Either (a) the origination timestamps must be imbedded in the origination message and must survive and be part of the delivery message, or (b) the origination and termination points must both log message times (along with unique keys) and these logs must subsequently be matched by key to compute latency.
· Often the sender and receiver are located on different hosts and time synchronization issues may come into play, depending upon the precision required for these measurements.

Monitoring Level 4. Levels 2 and 3 support the monitoring of an application performance requirement. Level 4 uses similar techniques to monitor a “white box” view of the application. This allows support personnel to quickly identify the root cause sub-component when an application fails to meet its performance requirement.
In our trading example, we may require that an order must be delivered to an exchange within a predefined time after the client submits it. If this were to be exceeded, Level 4 monitoring could tell us the latencies through each of the various sub-components involved in this order flow.
Obviously Level 4 monitoring must be implemented with diligence so as to (a) not impact performance, (b) not generate so much data as to overwhelm the monitoring infrastructure, and (c) properly manage clock synchronization issues.

� A well formed performance requirement is one that (a) has a strong grounding in business context, (b) is structured in a way that is testable in a lab and is monitorable in production, and (c) addresses both sides of the consumer/provider relationship – i.e. includes specifications of the bounds on response times and latency to protect the consumer and includes specifications on bounds on usage volumes to protect the provider.

� Two needs are being addressed here: (a) the ability to monitor performance behavior against the performance requirement – i.e. the “black box view”, and (b) the ability to rapidly understand root cause of performance failures – i.e. the “white box view”. No off-the-shelf monitoring products can fully address this space without special “hooks” being functionally slipped into the application. The nature of these “hooks” is highly dependent upon (a) the monitoring software, (b) the structure of the performance requirement, and (b) the technology architecture. It is the role of the performance architect to design the solution to this problem.

� We would like to acknowledge the contributions of Jose De La Rosa (JDR Labs, Inc.) in developing Delivery Level 4 concepts.

� We define “fundamental” resource utilization (a.k.a resource demand) to be (a) At the host level: CPU, disk IO, memory, network send Mb/s, and network receive Mb/s, and (b) at the process level: CPU, virtual memory, and resident memory.

Copyright MasterLab, Inc. 2008 All rights reserved. Page 5 of 6

