 MasterLab, Inc.

Performance Architect
For
Delivery Maturity Level 3

Mo Howes - October 2008 – Version 4
This paper describes the role of Performance Architect when transitioning to Delivery Level 3 of the MasterLab Performance Engineering Maturity Model ™.
This model defines Level 3 as:
This level constitutes a shift from reactive to proactive performance engineering practices where performance and functionality are placed on equal footing. A systematic process is established to assess the firm’s exposure to performance risk for each application and appropriate resourcing is allocated to performance engineering throughout the delivery cycle. Well-formed (although high level) performance requirements are established during envisioning and then are refined and decomposed during delivery. Developers and vendors are held responsible for producing sub-components that meet the “performance budgets” associated with their scope of delivery. Well-formed performance requirements are included in vendor RFI’s and RFP’s. Pre-sales relationships with vendors are leveraged to force vendors to either conclusively demonstrate that their products can meet the firm’s performance requirements or have them participate in the cost to demonstrate this in a lab environment.
Firms transitioning to Level 3 observe:

· A significant decrease in product deliveries that either fail or that must incur significant time and cost overruns to rectify performance defects late in delivery or after deployment.

· A significant decrease in the time to detect and to determine root cause of performance defects. This is due to application monitoring features being tightly coupled to the structure of the performance requirement.

· A decrease in costs associated with performance testing that occurs after integration and before deployment. This is due to (a) a lessened need to do business analysis to formulate the performance requirement, as this has been maintained throughout the delivery process, and (b) a lessened need to do repeated performance regressions in support of “last minute desperation tuning”.

· A decrease in the rate that hardware must be provisioned in the datacenter. This is due to (a) holding developers and vendors accountable for delivering sub-components that meet pre-planned “performance budgets”, and (b) identification and remediation of inefficient usage of hardware much earlier in the delivery lifecycle.

· A decrease in delivery costs through leveraging pre-sales environments to force vendors to bear the cost of ensuring that their products meet predefined performance requirements.

See the MasterLab companion paper Performance Engineering Maturity for a more in depth discussion of maturity levels.

Key to transitioning to Level 3 maturity is the introduction of the role of Performance Architect.
This role is (a) staffed out of the organization responsible for enterprise architecture to help reconcile global vs. local issues, however (b) works on a day-to-day basis as a member of the business technology group to deliver application products.

The role of Performance Architect encompasses the following:

· Performance Risk Assessment. The Performance Architect scores relevant applications to categorize the firm’s exposure to performance risk for each, based upon the business loss that could occur should the application fail to meet performance requirements under peak load. This information is then used for establishing the appropriate levels of funding and resource allocations for performance engineering activities throughout the delivery lifecycle.
· Performance Requirement Specification. This is an iterative process that starts in envisioning and continues through analysis and detailed design. Qualitative business objectives for performance are translated to well-formed
 performance requirements. This may require business analysis of how the application will service the business, statistical analysis of historical usage patterns to understand current state, and interviews with business owners to understand future needs. These performance requirements will provide input to (a) SLA specifications, (b) architectural and design decisions, (c) the performance sections of vendor RFI’s and RFP’s, and (c) testing and monitoring strategies.
· Performance Budgeting. Integral to attaining Level 3 Maturity, is the practice of establishing testable performance requirements for smaller subcomponents of the application and holding the owner of each subcomponent responsible for delivering software that is compliant. This is managed by recursively decomposing the high level performance requirement into “performance budgets”
 for sub-components. This recursive tree of “budgets” will ebb and flow throughout the delivery life cycle and it is the job of the Performance Architect to keep this tree in balance and to arbitrate contentions as they arise.

· Performance Methods and Tools. Once developers realize that they will be held responsible for meeting performance budgets for their deliverables, there will be an increased appetite for acquiring the tools, methods, and skills necessary for validating performance behavior during private unit testing. It is the job of the Performance Architect to strategize with developers to identify the proper tools and methods and to provide education if needed.

· Custom Simulation Tools. The Performance Architect is responsible for designing, coding, and productizing custom simulators needed by developers and performance testers when such tools are not readily available. This can include exchange simulators, market data simulators, third-party application simulators, etc. The Performance Architect should also be a review point on any performance measurement tools created by developers or supplied by vendors. This review should include validation of (a) throughput control, (b) instrumentation for throughput, response time, and latency, (c) analysis of “jitter”, i.e. percentile and histogram analysis of response and latency, and (d) product calibration to assess the operational range of the tool and to measure its resource utilization footprint.
· Vendor Negotiations. Pre-sales environments offer many opportunities for leveraging vendor relationships to reduce the cost of managing performance risk. All RFI’s and RFP’s should include well-formed performance requirements and vendors should be required to (a) produce evidence that their product can meet these requirements and (b) provide estimates of the hardware that will be required. If this cannot be produced, then the majority of the cost to do so through benchmarking or prototyping should be born by the vendor. It is the job of the Performance Architect to identify these opportunities and to supply the product owner with the technical details needed to conduct these negotiations.
· Instrumentation Design. It is the job of the Performance Architect to ensure that proper monitoring functionality is imbedded in each application. Two needs are being addressed here: (a) the ability to monitor performance behavior against the performance requirement – i.e. the “black-box view”, and (b) the ability to rapidly understand root cause of performance failures – i.e. the “white-box view”. Often no off-the-shelf monitoring products can fully address this space without special “hooks” being functionally slipped into the application. The nature of these “hooks” is highly dependent upon (a) the monitoring software, (b) the structure of the performance requirement, and (b) the technology architecture. It is the role of the performance architect to design the solution to this problem.

· Performance Research and Development. The Performance Architect should be an active member of any working teams tasked with generating competitive business advantages through innovation in technology performance.
· Process Integrity. The Performance Architect is responsible for monitoring the maturity and overall health of performance risk management throughout all steps in the delivery lifecycle.
This includes:

· Verifying that all architecture and design decisions properly address performance risk

· Verifying that all vendor negotiations properly address performance risk

· Auditing performance claims made by vendors
· Verifying the completeness and integrity of all client-facing SLA’s

· Auditing performance unit testing conducted by developers

· Auditing performance test groups that typically conduct benchmarking between integration and UAT.

· Auditing groups dedicated to monitoring, alerting, and capacity planning.

In summary, the role of Performance Architect is to ensure that the management of the opportunities and risks associated with performance are placed on equal footing to product functionality throughout all aspects of the delivery lifecycle.
This role is the key ingredient in achieving Delivery Level 3 of the MasterLab Performance Engineering Maturity Model ™. This represents a shift from reactive to proactive performance engineering practice that recognizes that:

· Performance risk is fundamentally more insidious and than functional risk. While functional defects typically are visible under all usages volumes, performance defects often manifest only at the time it will cause the greatest business loss (for instance a collapse in performance of a trading system during a major market move).

· Management of performance risk is more challenging than management of functional risk. While the organizational roles for designing, implementing, and verifying functional behavior has been well defined for decades, the ownership of analogous responsibilities with respect to performance is, to this day, confused and misaligned in many product delivery organizations.
· The majority of performance defects are introduced during software design

· Allocating sufficient hardware is only a very small part of performance risk management
· Last minute software tuning is only a very small part of performance risk management

· Developers must be held accountable for designing and delivering subcomponents that meet predefined performance budgets – just as they are held responsible for designing and delivering subcomponents that meet pre-defined functional requirements.

· Vendors must be held accountable for delivering subcomponents that meet predefined performance budgets, and should be expected to bear the brunt of the cost of doing so.

· The structure of the performance requirement actually impacts the functional requirements. This is because both the black-box instrumentation required for SLA monitoring and the white-box performance instrumentation required for rapid root cause analysis of SLA failures often require custom “hooks” to be inserted into the application.
· At its best, performance Engineering encompasses more than just risk mitigation. It also encompasses the seeking of new opportunities and completive advantages through creative performance innovation.
Skills Required

Performance Architects require in-depth knowledge and skills in three areas:

· Application Design and Coding. Performance architects must have extensive experience in coding of application servers or in network programming, preferably in non-garbage collecting languages. This background is necessary (a) for constructing high performance simulators with stable performance profiles, (b) for effectively communicating with high end developers when negotiation performance budgets, (c) for establishing credibility when reviewing simulators designed by other team members or when acquiring them from third party vendors, (d) for writing analysis software to farm current state usage statistics from log files, database, etc., and (e) for contributing to R&D efforts seeking business advantage through performance innovation.
· Business Analysis. Performance Architects must be able to rapidly understand and model highly complex and highly interrelated business flows in ways that facilitates translation of business performance objectives to well-formed performance requirements. This requires fluency in both the business context and in the supporting delivery technologies.
· Performance Engineering Concepts, Methods, and Process. Performance Architects must by highly trained in (a) how to formulate performance requirements, (b) how to construct and balance performance budgets, (c) how to select, design, code, verify, and calibrate performance simulation and measurement tools, (d) how to validate performance budgets and performance requirements via benchmarking, (e) how to inject performance engineering into vendor management practices, (f) how to instrument applications for performance monitoring, (g) how to rapidly determine root cause of performance defects, and (h) how to assess performance risk and performance opportunities for any given business context.

� A well-formed performance requirement is one that (a) has a strong grounding in business context, (b) is structured in a way that is testable in a lab and is monitorable in production, and (c) addresses both sides of the consumer/provider relationship – i.e. includes specifications of the bounds on response times and latency to protect the consumer and includes specifications on bounds on usage volumes to protect the provider.

� A performance budget is a well-formed performance requirement for a small piece of the application, often coupled with a constraint on how much hardware resource it can consume. An extreme example is: All SQL statements associated with inserting a new trade cannot take more that 1 second when running at a rate of 100 trades-per-second over a WAN link with 90 millisecond round-trip latency, and cannot consume more than 400 MHz CPU on the database host.

Page 5 of 5

